STATIC

GEMINI / GEMINI PLUS

Standard features

All ORTEA equipments are designed and built in compliance with the Low Voltage and Electromagnetic Compatibility European Directives with regard to the CE marking requirements. ORTEA products are built with suitable quality components and that the manufacturing process is constantly verified in accordance with the Quality Control Plans which the Company applies in compliance with the ISO 9001 Standards. The commitment towards environmental issues and safety at work issues is guaranteed by the certification of the Management System guaranteed by the certification of the Management System
according to the ISO14001 and OHSAS18001 Standards. according to the ISO14001 and OHSAS18001 Standards. In order to obtain better performance, the products described in
the present document can be altered by the Company at any date and without prior notice. Technical data and descriptions do not hold therefore any contractual value.

Accessories

Voltage regulation	Gemini	Gemini plus
	IGBT controlled	
Selectable output voltage*	220-230-240V	
Output voltage accuracy	$\pm 0.5 \%$	
Frequency	$50 \mathrm{~Hz} \pm 5 \%$ or $60 \mathrm{~Hz} \pm 5 \%$	
Admitted load variation	Up to 100\%	
Cooling	Forced ventilation	
Ambient temperature	$-25 /+45^{\circ} \mathrm{C}$	
Storage temperature	$-25 /+60^{\circ} \mathrm{C}$	
Max relative humidity	<95\% (non condensing)	
Admitted overload	150\% 2sec.	
Colour	RAL 9005	
Protection degree	IP 21	
Instrumentation	Output digital voltmetre	
Installation	Indoor	
Overvoltage protection	Output class II surge arrestors	
Protection	- EMI/RFI filters - Automatic by-pass protection	- EMI/RFI filters - Input circuit breaker - Protection by-pass (automatic) - Maintenance by-pass (manual)

* Output voltage can be adjusted by choosing one of the indicated values.

Such choice sets the new nominal value as a reference for all the stabiliser parameters.

$\mathbf{\pm 1 5 \%}$	$\mathbf{\pm 2 0 \%}$	$\mathbf{\pm 2 5 \%}$	$\mathbf{\pm 3 0 \%}$
10	7	5	4
15	10	7	5
20	15	10	7
30	20	15	10
40	30	20	15

Interrupting devices
Load protection against over/undervoltage
Input isolating transformer
Up to IP55 protection degree for indoor and outdoor installation

STATIC
DIGITAL VOLTAGE STABILISERS

Type	Input variation	Rated power	Input voltage range	Max input current	Output voltage	Rated output current	Eff.	Correction time	Cabinet type	Cabinet dimensions WxDxH	Weight
	$[\%]$	$[\mathrm{kVA}]$	$[\mathrm{V}]$	$[\mathrm{A}]$	$[\mathrm{V}]$	$[\mathrm{A}]$	$[\%]$			$[\mathrm{mm}]$	$[\mathrm{kg}]$

Gemini $\pm 20 \% / \pm 15 \%$											
ES7-20	± 20	7	184-276	38	230	30	>98	one cycle	13	$300 \times 560 \times 300$	30
ES10-15	± 15	10	195-265	51	230	43	>98	one cycle	13	$300 \times 560 \times 300$	30
ES10-20	± 20	10	184-276	54	230	43	>98	one cycle	13	$300 \times 560 \times 300$	35
ES15-15	± 15	15	195-265	77	230	65	>98	one cycle	13	$300 \times 560 \times 300$	35
ES15-20	± 20	15	184-276	82	230	65	>98	one cycle	22	$410 \times 530 \times 1200$	50
ES20-15	± 15	20	195-265	103	230	87	>98	one cycle	22	$410 \times 530 \times 1200$	50
ES20-20	± 20	20	184-276	109	230	87	>98	one cycle	23	$410 \times 680 \times 1200$	110
ES30-15	± 15	30	195-265	154	230	130	>98	one cycle	23	$410 \times 680 \times 1200$	110
ES30-20	± 20	30	184-276	163	230	130	>98	one cycle	23	$410 \times 680 \times 1200$	125
ES40-15	± 15	40	195-265	205	230	174	>98	one cycle	23	$410 \times 680 \times 1200$	125

The values listed in the table are referred to 230 V nominal voltage

Gemini $\pm 30 \% / \pm 25 \%$											
ES4-30	± 30	4	161-300	25	230	17	>98	one cycle	13	$300 \times 560 \times 300$	30
ES5-25	± 25	5	172-288	29	230	22	>98	one cycle	13	$300 \times 560 \times 300$	30
ES5-30	± 30	5	161-300	31	230	22	>98	one cycle	13	$300 \times 560 \times 300$	35
ES7-25	± 25	7	172-288	41	230	30	>98	one cycle	13	$300 \times 560 \times 300$	35
ES7-30	± 30	7	161-300	43	230	30	>98	one cycle	22	$410 \times 530 \times 1200$	50
ES10-25	± 25	10	172-288	58	230	43	>98	one cycle	22	$410 \times 530 \times 1200$	50
ES10-30	± 30	10	161-300	62	230	43	>98	one cycle	23	$410 \times 680 \times 1200$	110
ES15-25	± 25	15	172-288	87	230	65	>98	one cycle	23	$410 \times 680 \times 1200$	110
ES15-30	± 30	15	161-300	93	230	65	>98	one cycle	23	$410 \times 680 \times 1200$	125
ES20-25	± 25	20	172-288	116	230	87	>98	one cycle	23	$410 \times 680 \times 1200$	125

The values listed in the table are referred to 230 V nominal voltage

Type	Input variation	Rated power	Input voltage range	Max input current	Output voltage	Rated output current	Eff.	Correction time	Cabinet type	Cabinet dimensions WxDxH	Weight
	$[\%]$	$[\mathrm{kVA}]$	$[\mathrm{V}]$	$[\mathrm{A}]$	$[\mathrm{V}]$	$[\mathrm{A}]$	$[\%]$			$[\mathrm{mm}]$	$[\mathrm{kg}]$

Gemini plus $\mathbf{\pm 2 0} / \mathbf{\pm 1 5 \%}$										
ESP7-20	± 20	7	$184-276$	38	230	30	>98	one cycle	13	$300 \times 560 \times 300$
ESP10-15	± 15	10	$195-265$	51	230	43	>98	one cycle	13	$300 \times 560 \times 300$
ESP10-20	± 20	10	$184-276$	54	230	43	>98	one cycle	13	$300 \times 560 \times 300$
ESP15-15	± 15	15	$195-265$	77	230	65	>98	one cycle	13	$300 \times 560 \times 300$
ESP15-20	± 20	15	$184-276$	82	230	65	>98	one cycle	22	$410 \times 530 \times 1200$
ESP20-15	± 15	20	$195-265$	103	230	87	>98	one cycle	22	$410 \times 530 \times 1200$
ESP20-20	± 20	20	$184-276$	109	230	87	>98	one cycle	23	$410 \times 680 \times 1200$
ESP30-15	± 15	30	$195-265$	154	230	130	>98	one cycle	23	$410 \times 680 \times 1200$
ESP30-20	± 20	30	$184-276$	163	230	130	>98	one cycle	23	$410 \times 680 \times 1200$
ESP40-15	± 15	40	$195-265$	205	230	174	>98	one cycle	23	$410 \times 680 \times 1200$

The values listed in the table are referred to 230 V nominal voltage

Gemini plus $\mathbf{\pm 3 0 \%} / \pm \mathbf{2 5 \%}$										
ESP4-30	± 30	4	$161-300$	25	230	17	>98	one cycle	13	$300 \times 560 \times 300$
ESP5-25	± 25	5	$172-288$	29	230	22	>98	one cycle	13	$300 \times 560 \times 300$
ESP5-30	± 30	5	$161-300$	31	230	22	>98	one cycle	13	$300 \times 560 \times 300$
ESP7-25	± 25	7	$172-288$	41	230	30	>98	one cycle	13	$300 \times 560 \times 300$
ESP7-30	± 30	7	$161-300$	43	230	30	>98	one cycle	22	$410 \times 530 \times 1200$
ESP10-25	± 25	10	$172-288$	58	230	43	>98	one cycle	22	$410 \times 530 \times 1200$
ESP10-30	± 30	10	$161-300$	62	230	43	>98	one cycle	23	$410 \times 680 \times 1200$
ESP15-25	± 25	15	$172-288$	87	230	65	>98	one cycle	23	$410 \times 680 \times 1200$
ESP15-30	± 30	15	$161-300$	93	230	65	>98	one cycle	23	$410 \times 680 \times 1200$
ESP20-25	± 25	20	$172-288$	116	230	87	>98	one cycle	23	$410 \times 680 \times 1200$

The values listed in the table are referred to 230 V nominal voltage

CABINET SIZE

Type	Dimensions [mm]			Type	Dimensions [mm]			Type	Dimensions [mm]		
	W	D	H		W	D	H		W	D	H
11	210	400	200	51	600	800	1800	74	6000	1000	2100
12	300	460	300	52	1800	800	2000	75	6600	1000	2100
13	300	560	300	53	1200	800	2000	76	7200	1000	2100
21	300	500	900	54	600	800	2000	80	3600	1400	2200
22	410	530	1200	55	1200	800	1800	81	4200	1400	2200
23	410	680	1200	56	1800	800	1800	82	4800	1400	2200
31	600	600	1600	57	2400	800	2000	83	5400	1400	2200
32	600	600	2000	58	3000	800	2000	84	6000	1400	2200
33	800	600	2000	59	3600	800	2100	85	6600	1400	2200
35	800	600	1800	60	600	1000	1800	86	7200	1400	2200
36	1200	600	1600	61	1200	1000	1800	87	7800	1400	2200
37	1200	600	2000	62	1800	1000	2000	86	7200	1400	2200
40	600	800	1600	63	2400	1000	2000	88	7000	1400	2200
41	1000	800	1800	64	3000	1000	2000	89	8000	1400	2200
42	800	800	2000	65	3600	1000	2000	90	4200	2000	2400
43	1200	800	1600	66	4200	1000	2000	91	5400	2000	2400
44	2000	800	2000	67	1200	1000	2000	92	6000	2000	2400
46	1800	800	1600	68	800	1000	2000	93	6600	2000	2400
47	1600	800	1800	70	3600	1000	2100	94	7200	2000	2400
48	2200	800	1800	71	4200	1000	2100	95	8400	2000	2400
49	2200	800	2000	72	4800	1000	2100				
50	2400	800	1800	73	5400	1000	2100				

